WIFI 6 技術說明

Reported: 台北工程部

Date: Aug 01th 2020

- Wi-Fi 6,是Wi-Fi聯盟給IEEE Std. P802.11ax 的別名。
- •以前的Wi-Fi叫作802.11a/b/n/g/ac/ax之類的 名字。這種命名方式容易讓人混亂,所以,從 802.11ax開始,以數位的方式進行命名。

• 目前負責Wi-Fi 6標準制定的,是IEEE標準協會 的TGax工作組。

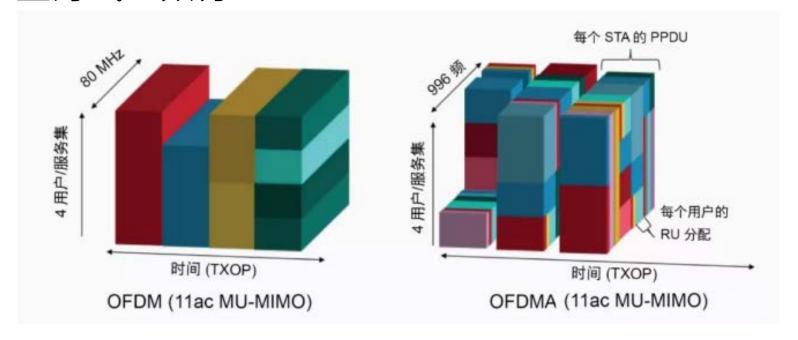
● Wi-Fi 6標準制定時間表

	Current Timeline		
May 2014	Start of TG		
November 2014	First draft of the TG SFD approved		
January 2016	Proposed TG draft		
March 2016	Draft 0.1 was approved and Comment Collection started		
November 2016	Issue Draft 1.0 and start WG Letter Ballot — Failed (57.77% LB 225: opened Dec. 1 st , 2016 and closed Jan. 8 th , 2017		
September 2017	Draft 2.0 and WG Letter Ballot — Failed (62.84%) LB 230: opened Oct. 5 th , 2017 and closed Nov. 4 th , 2017		
May 2018	Draft 3.0 and WG Letter Ballot — Passes (86.5%)		
Janury 2019	Draft 4.0 and Recirculation Ballot — Passes (92.2%)		
May 2019	Mandatory Draft Review		
June 2019	Formation of Sponsor Ballot pool		
August 2019	Initial Sponsor Ballot		
January 2020	Final 802.11 Approval		
March 2020	Conditional EC Approval		
June 2020	RevCom submittal and publication		

- Wi-Fi聯盟是一個非營利性行業組織,它擁有 Wi-Fi的商標,主要負責Wi-Fi認證和授權,也參 與802.11系列標準制定。
- 通過Wi-Fi 6產品驗證的設備可以在設備上加上Wi-Fi 6認證標籤,
- Wi-Fi 6商標和802.11ax標準的關係,因為IEEE TGax工作組和Wi-Fi聯盟的成員企業很大程度上是一致的,所以Wi-Fi 6驗證通過就等於支持了802.11ax。

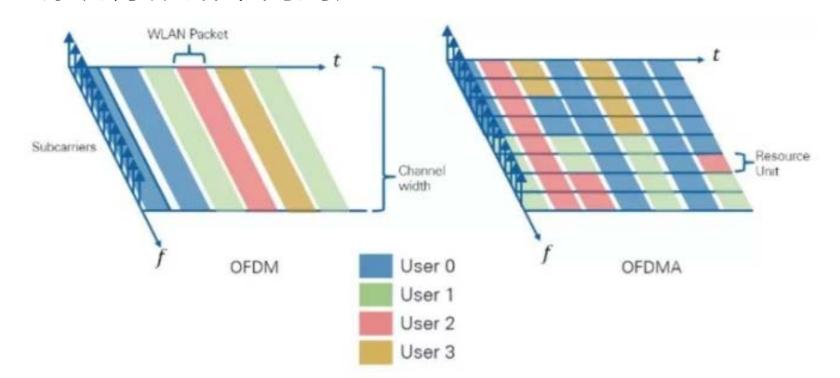
- 對比近年的通信標準(5G/Wi-Fi 6),未來幾 年通信行業的關注重點始終是物聯網。這一代的 新接入標準也主要在考慮**密集終端、低功耗和大** 頻寬接入。
- 主要改進部分:
 - OFDM→OFDMA
 - 支援目標喚醒時間(TWT) 來降低功耗提高電池壽命
 - 使用1024-QAM提高輸送量,最高支持8x8 MIMO
 - 支援空間複用和著色

延續802.11ax的MU-MIMO,同時把原本的OFDM變為OFDMA,A意思是可以用以多址接入,把載波分配給不同的使用者來提高系統使用者連接容量。

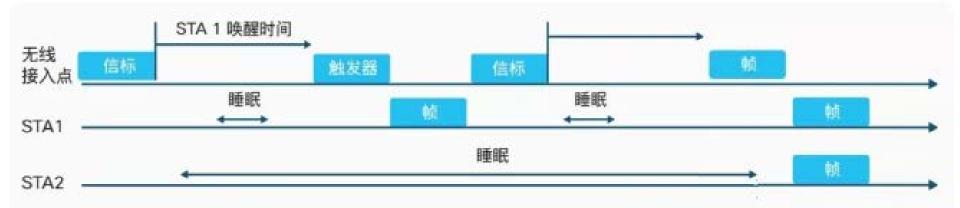


• ax/ac/n對比

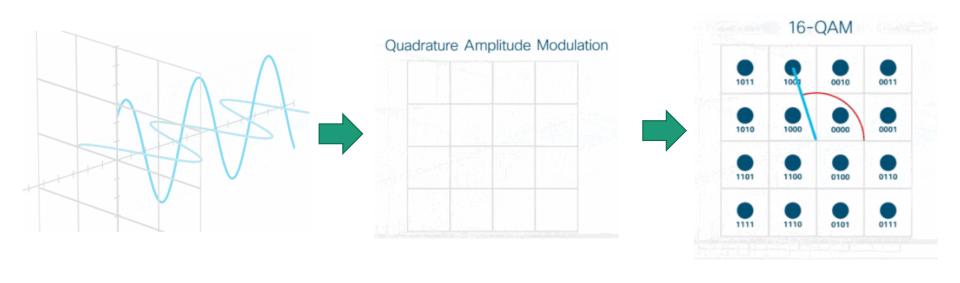
	802.11ax	802.11ac	802.11n
Channel Bandwidth	20, 40, 80, and 160 MHz	20, 40, 80, and 160 MHz	20, 40 MHz
Waveform	OFDMA	OFDM	OFDM
Band	2.4, 5, and 6 GHz	5 GHz	2.4 and 5 GHz
Number of Antennas	8	8	-4
Advanced Power Save	Target Wake up Time (TWT)	No	No
Aggregate Data Rate	9.6 Gbps	6.9 Gbps	600 Mbps
User Experience	4x improvement	?	?
20 MHz-only operation	Yes	No	Yes
Spatial Reuse	Yes	No	No
MU MIMO	DL MU MIMO and Triggered UL MIMO	DL MU MIMO	No
Outdoor	Improved support	No	No
QAM	1024 QAM	256 QAM	64 QAM



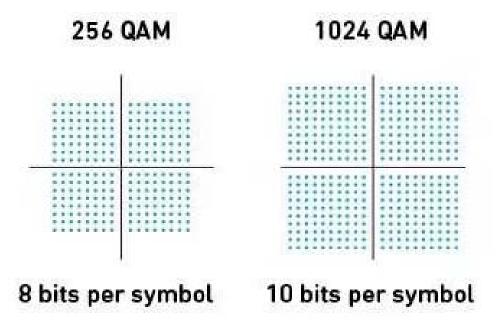
• 以往的Wi-Fi協議中,比如802.11ac對多個無線接入用戶採用空間分隔(MU-MIMO)或者時間分隔(輸流傳輸/EDCA)的方式支援,而OFDMA意味著增加了另外一種多使用者資源配置方式--頻分。



 原本Wi-Fi中的最小資源單元只是時間幀,現在 變成了一種類似LTE中的時/頻資源塊,可以支援 更加細微性的無線資源配置,比如把不同的資 源塊分配給不同用戶。



- Wi-Fi 6延續了802.11ah中的TWT (Target Wake Time)功能,這是一種設備資源調度方式。
- 允許設備和接入節點之間協商在進入休眠之後什麼時候被喚醒,而不是從前的定時接入網路。支援Wi-Fi 6的接入點可以把用戶端設備分組到不同的TWT週期,從而分組定時喚醒,這樣有助於減少通道爭用設備的數量。



● OFDM波形通常採用QAM(正交幅度調製)作 為調製方式

• 1024-QAM可以讓單個符號傳遞10bit (1024=2的10次方)資料,這是提高無線系 統速度非常有效的方式。也正因為1024-QAM 單個天線可以實現千兆級資料傳輸。

- WiFi 6可以支援8x8的MIMO, 當然目前手機並不支持這麼高的MIMO層數,因為天線放不下。
- 所以目前Wi-Fi 6的最高理論速度大約是:
 - 2.4Gbps(4x4 MIMO@80MHz)
 - 4.8Gbps(8x8 MIMO@80MHz)
 - 4.8Gbps(4x4 MIMO@160MHz)
 - 9.6Gbps(8x8 MIMO@160MHz)

上面的80/160MHz指的是單載波頻寬。

空間重用(Spatial Reuse)和染色

- 這是LTE系統中已經採用很久的小區間干擾協調技術的變種。
- Wi-Fi作為一種無線局域網,並不考慮太多不同接入 節點之間的組網和同頻干擾問題,但隨著Wi-Fi應用 越來越廣泛,中大範圍場景覆蓋(比如企業大樓) 正在成為廣泛的問題。
- 這種中大型場景中,很常見存在比如一個手機同時 受到兩個不同無線接入點信號,但是是同一個無線 區域網路(同BSS/SSID)的情況。
- 針對這種情況,Wi-Fi 6 提供一種BSS染色機制,如果 手機收到的信號來自同頻段的相同無線區域網路 (比如來自兩個中繼器),那麼手機會及時識別干 擾信號並調高識別門限,及時停止接收來避免干擾。

- 其實主要區別是應用場景不同,正是因為應用場 景不同,雖然5G和Wi-Fi6中採用了很相似的無 線通訊技術,但是實際上用戶的體驗並不相同。
- 現在的各種5G轉Wi-Fi方案也正是因為目前的運 營商網路並不能很好解決無線局域網中使用者要 求的私密性問題。
- SIM卡倒不是問題,因為現在物聯網設備都在用 eSIM卡,支援空中讀寫,不需要手換。

FAE team

蕭翔文(Alvin) <u>alvin@aeneas.com.tw</u> (02)87974259#628

葉昇晏(Allen) allen.ye@aeneas.com.tw (02)87974259#635

許哲維(Leon) leon@aeneas.com.tw (02)87974259#636

王立文(Leo) leo@aeneas.com.tw (02)87974259#720

高士軒(Johnson) johnson@aeneas.com.tw (02)87984259#637

